概述 dispatch_group可以将GCD的任务合并到一个组里来管理,也可以同时监听组里所有任务的执行情况。主要的API有以下几个,先看一下Dispatch Group的具体使用。
dispatch_group_create 
dispatch_group_enter 
dispatch_group_leave 
dispatch_group_wait 
dispatch_group_notify 
dispatch_group_async 
 
使用篇 dispatch_group最多的用法便是用dispatch_group_enter和dispatch_group_leave实现一组任务完成的监控或回调,见代码示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 - (void)batchRequestConfig {     dispatch_group_t group = dispatch_group_create();     NSArray *list = @[@"1",@"2",@"3"];     [list enumerateObjectsUsingBlock:^(id  _Nonnull obj, NSUInteger idx, BOOL * _Nonnull stop) {         //标记开始本次请求         dispatch_group_enter(group);         [self fetchConfigurationWithCompletion:^(NSDictionary *dict) {             //标记本次请求完成             dispatch_group_leave(group);         }];     }];     dispatch_group_notify(group, dispatch_get_main_queue(), ^{         //所有请求都完成了,执行刷新UI等操作     }); } - (void)fetchConfigurationWithCompletion:(void(^)(NSDictionary *dict))completion {     //AFNetworking或其他网络请求库     dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{         //模拟网络请求         sleep(2);         !completion ? nil : completion(nil);     }); } 
dispatch_group有两个需要注意的地方:
这里先抛出一个问题让大家思考一下:如果dispatch_group_enter和dispatch_group_leave不成对出现会出现什么结果?具体的结论会在下面的原理篇和结论篇说明。
原理篇 dispatch_group_create Dispatch Group的本质是一个初始value为LONG_MAX的semaphore,通过信号量来实现一组任务的管理,代码如下:
1 2 3 4 5 6 7 8 dispatch_group_t dispatch_group_create(void) {     //申请内存空间 	dispatch_group_t dg = (dispatch_group_t)_dispatch_alloc( 			DISPATCH_VTABLE(group), sizeof(struct dispatch_semaphore_s)); 	//使用LONG_MAX初始化信号量结构体 	_dispatch_semaphore_init(LONG_MAX, dg); 	return dg; } 
dispatch_group_enter 1 2 3 4 5 6 7 8 void dispatch_group_enter(dispatch_group_t dg) { 	dispatch_semaphore_t dsema = (dispatch_semaphore_t)dg; 	long value = dispatch_atomic_dec2o(dsema, dsema_value, acquire); 	if (slowpath(value < 0)) { 		DISPATCH_CLIENT_CRASH( 				"Too many nested calls to dispatch_group_enter()"); 	} } 
dispatch_group_enter的逻辑是将dispatch_group_t转换成dispatch_semaphore_t后将dsema_value的值减一。
dispatch_group_leave 1 2 3 4 5 6 7 8 9 10 void dispatch_group_leave(dispatch_group_t dg) { 	dispatch_semaphore_t dsema = (dispatch_semaphore_t)dg; 	long value = dispatch_atomic_inc2o(dsema, dsema_value, release); 	if (slowpath(value < 0)) { 		DISPATCH_CLIENT_CRASH("Unbalanced call to dispatch_group_leave()"); 	} 	if (slowpath(value == LONG_MAX)) { 		(void)_dispatch_group_wake(dsema); 	} } 
dispatch_group_leave的逻辑是将dispatch_group_t转换成dispatch_semaphore_t后将dsema_value的值加一。_dispatch_group_wake唤醒group,因此dispatch_group_leave与dispatch_group_enter需成对出现。
当调用了dispatch_group_enter而没有调用dispatch_group_leave时,会造成value值不等于LONG_MAX而不会走到唤醒逻辑,dispatch_group_notify函数的block无法执行或者dispatch_group_wait收不到semaphore_signal信号而卡住线程。
当dispatch_group_leave比dispatch_group_enter多调用了一次时,dispatch_semaphore_t的value会等于LONGMAX+1(2147483647+1),即long的负数最小值LONG_MIN(–2147483648)。因为此时value小于0,所以会出现”Unbalanced call to dispatch_group_leave()”的崩溃,这是一个特别需要注意的地方。
dispatch_group_wait 1 2 3 4 5 6 7 8 9 10 11 long dispatch_group_wait(dispatch_group_t dg, dispatch_time_t timeout) { 	dispatch_semaphore_t dsema = (dispatch_semaphore_t)dg; 	if (dsema->dsema_value == LONG_MAX) { 		return 0; 	} 	if (timeout == 0) { 		return KERN_OPERATION_TIMED_OUT; 	} 	return _dispatch_group_wait_slow(dsema, timeout); } 
如果当前value的值为初始值,表示任务都已经完成,直接返回0,如果timeout为0的话返回超时。其余情况会调用_dispatch_group_wait_slow方法。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 static long _dispatch_group_wait_slow(dispatch_semaphore_t dsema, dispatch_time_t timeout) { 	long orig; 	mach_timespec_t _timeout; 	kern_return_t kr; again: 	if (dsema->dsema_value == LONG_MAX) { 		return _dispatch_group_wake(dsema); 	} 	(void)dispatch_atomic_inc2o(dsema, dsema_group_waiters, relaxed); 	if (dsema->dsema_value == LONG_MAX) { 		return _dispatch_group_wake(dsema); 	} 	_dispatch_semaphore_create_port(&dsema->dsema_port); 	switch (timeout) { 	default: 		do { 			uint64_t nsec = _dispatch_timeout(timeout); 			_timeout.tv_sec = (typeof(_timeout.tv_sec))(nsec / NSEC_PER_SEC); 			_timeout.tv_nsec = (typeof(_timeout.tv_nsec))(nsec % NSEC_PER_SEC); 			kr = slowpath(semaphore_timedwait(dsema->dsema_port, _timeout)); 		} while (kr == KERN_ABORTED); 		if (kr != KERN_OPERATION_TIMED_OUT) { 			DISPATCH_SEMAPHORE_VERIFY_KR(kr); 			break; 		} 	case DISPATCH_TIME_NOW: 		orig = dsema->dsema_group_waiters; 		while (orig) { 			if (dispatch_atomic_cmpxchgvw2o(dsema, dsema_group_waiters, orig, 					orig - 1, &orig, relaxed)) { 				return KERN_OPERATION_TIMED_OUT; 			} 		} 	case DISPATCH_TIME_FOREVER: 		do { 			kr = semaphore_wait(dsema->dsema_port); 		} while (kr == KERN_ABORTED); 		DISPATCH_SEMAPHORE_VERIFY_KR(kr); 		break; 	} 	goto again;  } 
可以看到跟dispatch_semaphore的_dispatch_semaphore_wait_slow方法很类似,不同点在于等待完之后调用的again函数会调用_dispatch_group_wake唤醒当前group。_dispatch_group_wake的分析见下面的内容。
dispatch_group_notify 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 void dispatch_group_notify(dispatch_group_t dg, dispatch_queue_t dq, 		dispatch_block_t db) { 	//封装调用dispatch_group_notify_f函数 	dispatch_group_notify_f(dg, dq, _dispatch_Block_copy(db), 			_dispatch_call_block_and_release); } //真正的入口函数 void dispatch_group_notify_f(dispatch_group_t dg, dispatch_queue_t dq, void *ctxt, 		void (*func)(void *)) { 	dispatch_semaphore_t dsema = (dispatch_semaphore_t)dg; 	//封装结构体 	dispatch_continuation_t prev, dsn = _dispatch_continuation_alloc(); 	dsn->do_vtable = (void *)DISPATCH_OBJ_ASYNC_BIT; 	dsn->dc_data = dq; 	dsn->dc_ctxt = ctxt; 	dsn->dc_func = func; 	dsn->do_next = NULL; 	_dispatch_retain(dq); 	//将结构体放到链表尾部,如果链表为空同时设置链表头部节点并唤醒group 	prev = dispatch_atomic_xchg2o(dsema, dsema_notify_tail, dsn, release); 	if (fastpath(prev)) { 		prev->do_next = dsn; 	} else { 		_dispatch_retain(dg); 		dispatch_atomic_store2o(dsema, dsema_notify_head, dsn, seq_cst); 		dispatch_atomic_barrier(seq_cst); // <rdar://problem/11750916> 		if (dispatch_atomic_load2o(dsema, dsema_value, seq_cst) == LONG_MAX) { 			_dispatch_group_wake(dsema); 		} 	} } 
dispatch_group_notify的具体实现在dispatch_group_notify_f函数里,逻辑就是将block和queue封装到dispatch_continuation_t里,并将它加到链表的尾部,如果链表为空同时还会设置链表的头部节点。如果dsema_value的值等于初始值,则调用_dispatch_group_wake执行唤醒逻辑。
dispatch_group_wake 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 static long _dispatch_group_wake(dispatch_semaphore_t dsema) { 	dispatch_continuation_t next, head, tail = NULL, dc; 	long rval;    //将dsema的dsema_notify_head赋值为NULL,同时将之前的内容赋给head 	head = dispatch_atomic_xchg2o(dsema, dsema_notify_head, NULL, relaxed); 	if (head) { 		//将dsema的dsema_notify_tail赋值为NULL,同时将之前的内容赋给tail 		tail = dispatch_atomic_xchg2o(dsema, dsema_notify_tail, NULL, relaxed); 	} 	rval = (long)dispatch_atomic_xchg2o(dsema, dsema_group_waiters, 0, relaxed); 	if (rval) { 		// wake group waiters 		_dispatch_semaphore_create_port(&dsema->dsema_port); 		do { 			kern_return_t kr = semaphore_signal(dsema->dsema_port); 			DISPATCH_SEMAPHORE_VERIFY_KR(kr); 		} while (--rval); 	} 	if (head) { 		// async group notify blocks 		do { 			next = fastpath(head->do_next); 			if (!next && head != tail) { 				while (!(next = fastpath(head->do_next))) { 					dispatch_hardware_pause(); 				} 			} 			dispatch_queue_t dsn_queue = (dispatch_queue_t)head->dc_data; 			dc = _dispatch_continuation_free_cacheonly(head); 			//执行dispatch_group_notify的block,见dispatch_queue的分析 			dispatch_async_f(dsn_queue, head->dc_ctxt, head->dc_func); 			_dispatch_release(dsn_queue); 			if (slowpath(dc)) { 				_dispatch_continuation_free_to_cache_limit(dc); 			} 		} while ((head = next)); 		_dispatch_release(dsema); 	} 	return 0; } 
dispatch_group_wake首先会循环调用semaphore_signal唤醒等待group的信号量,使dispatch_group_wait函数中等待的线程得以唤醒;然后依次获取链表中的元素并调用dispatch_async_f异步执行dispatch_group_notify函数中注册的回调,使得notify中的block得以执行。
dispatch_group_async dispatch_group_async的原理和dispatch_async比较类似,区别点在于group操作会带上DISPATCH_OBJ_GROUP_BIT标志位。添加group任务时会先执行dispatch_group_enter,然后在任务执行时会对带有该标记的执行dispatch_group_leave操作。下面看下具体实现:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 void dispatch_group_async(dispatch_group_t dg, dispatch_queue_t dq, 		dispatch_block_t db) { 	//封装调用dispatch_group_async_f函数 	dispatch_group_async_f(dg, dq, _dispatch_Block_copy(db), 			_dispatch_call_block_and_release); } void dispatch_group_async_f(dispatch_group_t dg, dispatch_queue_t dq, void *ctxt, 		dispatch_function_t func) { 	dispatch_continuation_t dc; 	_dispatch_retain(dg); 	//先调用dispatch_group_enter操作 	dispatch_group_enter(dg); 	dc = _dispatch_continuation_alloc();     //DISPATCH_OBJ_GROUP_BIT会在_dispatch_continuation_pop方法中用来判断是否为group,如果为group会执行dispatch_group_leave 	dc->do_vtable = (void *)(DISPATCH_OBJ_ASYNC_BIT | DISPATCH_OBJ_GROUP_BIT); 	dc->dc_func = func; 	dc->dc_ctxt = ctxt; 	dc->dc_data = dg; 	if (dq->dq_width != 1 && dq->do_targetq) { 		return _dispatch_async_f2(dq, dc); 	} 	_dispatch_queue_push(dq, dc); } 
dispatch_group_async_f与dispatch_async_f代码类似,主要执行了以下操作:
_dispatch_continuation_pop简化后的代码如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 static inline void _dispatch_continuation_pop(dispatch_object_t dou) { 	dispatch_continuation_t dc = dou._dc, dc1; 	dispatch_group_t dg; 	_dispatch_trace_continuation_pop(_dispatch_queue_get_current(), dou); 	//判断是否为队列,是的话执行队列的invoke函数 	if (DISPATCH_OBJ_IS_VTABLE(dou._do)) { 		return dx_invoke(dou._do); 	}  	//dispatch_continuation_t结构体,执行具体任务 	if ((long)dc->do_vtable & DISPATCH_OBJ_GROUP_BIT) { 		dg = dc->dc_data; 	} else { 		dg = NULL; 	} 	_dispatch_client_callout(dc->dc_ctxt, dc->dc_func); 	if (dg) { 	   //这是group操作,执行leave操作对应最初的enter 		dispatch_group_leave(dg); 		_dispatch_release(dg); 	} } 
总结篇 dispatch_group本质是个初始值为LONG_MAX的信号量,等待group中的任务完成其实是等待value恢复初始值。dispatch_group_enter和dispatch_group_leave必须成对出现。
如果dispatch_group_enter比dispatch_group_leave多一次,则wait函数等待的
如果dispatch_group_leave比dispatch_group_enter多一次,则会引起崩溃。