概述 dispatch_group可以将GCD的任务合并到一个组里来管理,也可以同时监听组里所有任务的执行情况。主要的API有以下几个,先看一下Dispatch Group的具体使用。
dispatch_group_create
dispatch_group_enter
dispatch_group_leave
dispatch_group_wait
dispatch_group_notify
dispatch_group_async
使用篇 dispatch_group
最多的用法便是用dispatch_group_enter和dispatch_group_leave实现一组任务完成的监控或回调,见代码示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 - (void)batchRequestConfig { dispatch_group_t group = dispatch_group_create(); NSArray *list = @[@"1",@"2",@"3"]; [list enumerateObjectsUsingBlock:^(id _Nonnull obj, NSUInteger idx, BOOL * _Nonnull stop) { //标记开始本次请求 dispatch_group_enter(group); [self fetchConfigurationWithCompletion:^(NSDictionary *dict) { //标记本次请求完成 dispatch_group_leave(group); }]; }]; dispatch_group_notify(group, dispatch_get_main_queue(), ^{ //所有请求都完成了,执行刷新UI等操作 }); } - (void)fetchConfigurationWithCompletion:(void(^)(NSDictionary *dict))completion { //AFNetworking或其他网络请求库 dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{ //模拟网络请求 sleep(2); !completion ? nil : completion(nil); }); }
dispatch_group有两个需要注意的地方: 1、dispatch_group_enter必须在dispatch_group_leave之前出现 2、dispatch_group_enter和dispatch_group_leave必须成对出现
这里先抛出一个问题让大家思考一下:如果dispatch_group_enter和dispatch_group_leave不成对出现会出现什么结果?具体的结论会在下面的原理篇和结论篇说明。
原理篇 dispatch_group_create Dispatch Group的本质是一个初始value为LONG_MAX的semaphore,通过信号量来实现一组任务的管理,代码如下:
1 2 3 4 5 6 7 8 dispatch_group_t dispatch_group_create(void) { //申请内存空间 dispatch_group_t dg = (dispatch_group_t)_dispatch_alloc( DISPATCH_VTABLE(group), sizeof(struct dispatch_semaphore_s)); //使用LONG_MAX初始化信号量结构体 _dispatch_semaphore_init(LONG_MAX, dg); return dg; }
dispatch_group_enter 1 2 3 4 5 6 7 8 void dispatch_group_enter(dispatch_group_t dg) { dispatch_semaphore_t dsema = (dispatch_semaphore_t)dg; long value = dispatch_atomic_dec2o(dsema, dsema_value, acquire); if (slowpath(value < 0)) { DISPATCH_CLIENT_CRASH( "Too many nested calls to dispatch_group_enter()"); } }
dispatch_group_enter
的逻辑是将dispatch_group_t
转换成dispatch_semaphore_t
后将dsema_value
的值减一。
dispatch_group_leave 1 2 3 4 5 6 7 8 9 10 void dispatch_group_leave(dispatch_group_t dg) { dispatch_semaphore_t dsema = (dispatch_semaphore_t)dg; long value = dispatch_atomic_inc2o(dsema, dsema_value, release); if (slowpath(value < 0)) { DISPATCH_CLIENT_CRASH("Unbalanced call to dispatch_group_leave()"); } if (slowpath(value == LONG_MAX)) { (void)_dispatch_group_wake(dsema); } }
dispatch_group_leave
的逻辑是将dispatch_group_t
转换成dispatch_semaphore_t
后将dsema_value
的值加一。 当value等于LONG_MAX时表示所有任务已完成,调用_dispatch_group_wake
唤醒group,因此dispatch_group_leave
与dispatch_group_enter
需成对出现。
当调用了dispatch_group_enter
而没有调用dispatch_group_leave
时,会造成value值不等于LONG_MAX而不会走到唤醒逻辑,dispatch_group_notify
函数的block无法执行或者dispatch_group_wait
收不到semaphore_signal
信号而卡住线程。
当dispatch_group_leave
比dispatch_group_enter
多调用了一次时,dispatch_semaphore_t的value会等于LONGMAX+1(2147483647+1),即long的负数最小值LONG_MIN(–2147483648)。因为此时value小于0,所以会出现”Unbalanced call to dispatch_group_leave()”的崩溃,这是一个特别需要注意的地方。
dispatch_group_wait 1 2 3 4 5 6 7 8 9 10 11 long dispatch_group_wait(dispatch_group_t dg, dispatch_time_t timeout) { dispatch_semaphore_t dsema = (dispatch_semaphore_t)dg; if (dsema->dsema_value == LONG_MAX) { return 0; } if (timeout == 0) { return KERN_OPERATION_TIMED_OUT; } return _dispatch_group_wait_slow(dsema, timeout); }
如果当前value的值为初始值,表示任务都已经完成,直接返回0,如果timeout为0的话返回超时。其余情况会调用_dispatch_group_wait_slow方法。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 static long _dispatch_group_wait_slow(dispatch_semaphore_t dsema, dispatch_time_t timeout) { long orig; mach_timespec_t _timeout; kern_return_t kr; again: if (dsema->dsema_value == LONG_MAX) { return _dispatch_group_wake(dsema); } (void)dispatch_atomic_inc2o(dsema, dsema_group_waiters, relaxed); if (dsema->dsema_value == LONG_MAX) { return _dispatch_group_wake(dsema); } _dispatch_semaphore_create_port(&dsema->dsema_port); switch (timeout) { default: do { uint64_t nsec = _dispatch_timeout(timeout); _timeout.tv_sec = (typeof(_timeout.tv_sec))(nsec / NSEC_PER_SEC); _timeout.tv_nsec = (typeof(_timeout.tv_nsec))(nsec % NSEC_PER_SEC); kr = slowpath(semaphore_timedwait(dsema->dsema_port, _timeout)); } while (kr == KERN_ABORTED); if (kr != KERN_OPERATION_TIMED_OUT) { DISPATCH_SEMAPHORE_VERIFY_KR(kr); break; } case DISPATCH_TIME_NOW: orig = dsema->dsema_group_waiters; while (orig) { if (dispatch_atomic_cmpxchgvw2o(dsema, dsema_group_waiters, orig, orig - 1, &orig, relaxed)) { return KERN_OPERATION_TIMED_OUT; } } case DISPATCH_TIME_FOREVER: do { kr = semaphore_wait(dsema->dsema_port); } while (kr == KERN_ABORTED); DISPATCH_SEMAPHORE_VERIFY_KR(kr); break; } goto again; }
可以看到跟dispatch_semaphore的_dispatch_semaphore_wait_slow
方法很类似,不同点在于等待完之后调用的again函数会调用_dispatch_group_wake
唤醒当前group。_dispatch_group_wake
的分析见下面的内容。
dispatch_group_notify 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 void dispatch_group_notify(dispatch_group_t dg, dispatch_queue_t dq, dispatch_block_t db) { //封装调用dispatch_group_notify_f函数 dispatch_group_notify_f(dg, dq, _dispatch_Block_copy(db), _dispatch_call_block_and_release); } //真正的入口函数 void dispatch_group_notify_f(dispatch_group_t dg, dispatch_queue_t dq, void *ctxt, void (*func)(void *)) { dispatch_semaphore_t dsema = (dispatch_semaphore_t)dg; //封装结构体 dispatch_continuation_t prev, dsn = _dispatch_continuation_alloc(); dsn->do_vtable = (void *)DISPATCH_OBJ_ASYNC_BIT; dsn->dc_data = dq; dsn->dc_ctxt = ctxt; dsn->dc_func = func; dsn->do_next = NULL; _dispatch_retain(dq); //将结构体放到链表尾部,如果链表为空同时设置链表头部节点并唤醒group prev = dispatch_atomic_xchg2o(dsema, dsema_notify_tail, dsn, release); if (fastpath(prev)) { prev->do_next = dsn; } else { _dispatch_retain(dg); dispatch_atomic_store2o(dsema, dsema_notify_head, dsn, seq_cst); dispatch_atomic_barrier(seq_cst); // <rdar://problem/11750916> if (dispatch_atomic_load2o(dsema, dsema_value, seq_cst) == LONG_MAX) { _dispatch_group_wake(dsema); } } }
dispatch_group_notify的具体实现在dispatch_group_notify_f函数里,逻辑就是将block和queue封装到dispatch_continuation_t里,并将它加到链表的尾部,如果链表为空同时还会设置链表的头部节点。如果dsema_value的值等于初始值,则调用_dispatch_group_wake执行唤醒逻辑。
dispatch_group_wake 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 static long _dispatch_group_wake(dispatch_semaphore_t dsema) { dispatch_continuation_t next, head, tail = NULL, dc; long rval; //将dsema的dsema_notify_head赋值为NULL,同时将之前的内容赋给head head = dispatch_atomic_xchg2o(dsema, dsema_notify_head, NULL, relaxed); if (head) { //将dsema的dsema_notify_tail赋值为NULL,同时将之前的内容赋给tail tail = dispatch_atomic_xchg2o(dsema, dsema_notify_tail, NULL, relaxed); } rval = (long)dispatch_atomic_xchg2o(dsema, dsema_group_waiters, 0, relaxed); if (rval) { // wake group waiters _dispatch_semaphore_create_port(&dsema->dsema_port); do { kern_return_t kr = semaphore_signal(dsema->dsema_port); DISPATCH_SEMAPHORE_VERIFY_KR(kr); } while (--rval); } if (head) { // async group notify blocks do { next = fastpath(head->do_next); if (!next && head != tail) { while (!(next = fastpath(head->do_next))) { dispatch_hardware_pause(); } } dispatch_queue_t dsn_queue = (dispatch_queue_t)head->dc_data; dc = _dispatch_continuation_free_cacheonly(head); //执行dispatch_group_notify的block,见dispatch_queue的分析 dispatch_async_f(dsn_queue, head->dc_ctxt, head->dc_func); _dispatch_release(dsn_queue); if (slowpath(dc)) { _dispatch_continuation_free_to_cache_limit(dc); } } while ((head = next)); _dispatch_release(dsema); } return 0; }
dispatch_group_wake
首先会循环调用semaphore_signal
唤醒等待group的信号量,使dispatch_group_wait
函数中等待的线程得以唤醒;然后依次获取链表中的元素并调用dispatch_async_f
异步执行dispatch_group_notify
函数中注册的回调,使得notify中的block得以执行。
dispatch_group_async dispatch_group_async
的原理和dispatch_async
比较类似,区别点在于group操作会带上DISPATCH_OBJ_GROUP_BIT标志位。添加group任务时会先执行dispatch_group_enter
,然后在任务执行时会对带有该标记的执行dispatch_group_leave
操作。下面看下具体实现:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 void dispatch_group_async(dispatch_group_t dg, dispatch_queue_t dq, dispatch_block_t db) { //封装调用dispatch_group_async_f函数 dispatch_group_async_f(dg, dq, _dispatch_Block_copy(db), _dispatch_call_block_and_release); } void dispatch_group_async_f(dispatch_group_t dg, dispatch_queue_t dq, void *ctxt, dispatch_function_t func) { dispatch_continuation_t dc; _dispatch_retain(dg); //先调用dispatch_group_enter操作 dispatch_group_enter(dg); dc = _dispatch_continuation_alloc(); //DISPATCH_OBJ_GROUP_BIT会在_dispatch_continuation_pop方法中用来判断是否为group,如果为group会执行dispatch_group_leave dc->do_vtable = (void *)(DISPATCH_OBJ_ASYNC_BIT | DISPATCH_OBJ_GROUP_BIT); dc->dc_func = func; dc->dc_ctxt = ctxt; dc->dc_data = dg; if (dq->dq_width != 1 && dq->do_targetq) { return _dispatch_async_f2(dq, dc); } _dispatch_queue_push(dq, dc); }
dispatch_group_async_f
与dispatch_async_f
代码类似,主要执行了以下操作: 1、调用dispatch_group_enter 2、将block和queue等信息记录到dispatch_continuation_t中,并将它加入到group的链表中。 3、_dispatch_continuation_pop执行时会判断任务是否为group,是的话执行完任务再调用dispatch_group_leave以达到信号量value的平衡。
_dispatch_continuation_pop
简化后的代码如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 static inline void _dispatch_continuation_pop(dispatch_object_t dou) { dispatch_continuation_t dc = dou._dc, dc1; dispatch_group_t dg; _dispatch_trace_continuation_pop(_dispatch_queue_get_current(), dou); //判断是否为队列,是的话执行队列的invoke函数 if (DISPATCH_OBJ_IS_VTABLE(dou._do)) { return dx_invoke(dou._do); } //dispatch_continuation_t结构体,执行具体任务 if ((long)dc->do_vtable & DISPATCH_OBJ_GROUP_BIT) { dg = dc->dc_data; } else { dg = NULL; } _dispatch_client_callout(dc->dc_ctxt, dc->dc_func); if (dg) { //这是group操作,执行leave操作对应最初的enter dispatch_group_leave(dg); _dispatch_release(dg); } }
总结篇 dispatch_group本质是个初始值为LONG_MAX的信号量,等待group中的任务完成其实是等待value恢复初始值。dispatch_group_enter
和dispatch_group_leave
必须成对出现。
如果dispatch_group_enter
比dispatch_group_leave
多一次,则wait函数等待的 线程不会被唤醒和注册notify的回调block不会执行;
如果dispatch_group_leave
比dispatch_group_enter
多一次,则会引起崩溃。